VÝSKUM ERÓZIE BREHOV V PRÍTOKOCH VODÁRENSKEJ NÁDRŽE HRIŇOVÁ

prof. Ing. Matúš Jakubis, PhD.

Technická univerzita vo Zvolene, Lesnícka fakulta, Masarykova 24, 960 53 Zvolen, Slovenská republika, e-mail: jakubis@vsld.tuzvo.sk

ÚVOD A PROBLEMATIKA

Kvalita vody vo vodárenských nádržiach (VN) je negatívne ovplyvňovaná ich zanášaním. Zanášanie VN môže pochádzať z viacerých zdrojov (abrázia, vnútorné zanášanie, prítoky). Na intenzitu zanášania VN významne vplýva stupeň prirodzenej ustálenosti korýt ich prítokov. Prítoky VN sa nachádzajú takmer výlučne v prirodzenom stave. Úseky korýt s vysokým stupňom prirodzenej ustálenosti sa existujú v stave hydraulickej rovnováhy. Nie sú významnejšie narušované eróznymi procesmi počas vysokých (vymieľanie) ani nízkych (zanášanie) prietokov. Takéto úseky prítokov VN si nevyžadujú zásahy. Je potrebné ponechať ich v existujúcom stave, do akého sa dostali počas postupného prirodzeného ustaľovania v rámci dlhodobej morfogenézy, trvajúcej tisícky rokov. Existujú v rámci stabilného ekosystému, ktorého dôležitou súčasťou sú kvalitné brehové porasty, ktoré majú s ohľadom na kvalitu vody vo VN nenahraditeľnú pôdoochrannú (brehoochrannú) a vodoochrannú funkciu. ROSGEN (2002) uvádza, že v niektorých prípadoch môžu tvoriť pôdne straty vyvolané eróziou brehov vodných tokov až 80 % z celkových ročných pôdnych strát v povodí. POLLEN ET AL. (2004) zistili, že tento podiel môže tvoriť viac ako 50 % z celkových ročných pôdnych strát v povodí. Tieto hodnoty citovaní autori uvádzajú v súvislosti s rôznou kvalitou brehových porastov a potvrdzujú, že s ich stúpajúcou kvalitou narastá ich pôdoochranný význam.

CIEĽ A METODIKA

Cieľom príspevku je analýza vzťahu medzi stupňom prirodzenej ustálenosti koryta, ktorý sme vyjadrili súčiniteľom kvázirovnomerného prúdenia M_{kp} (GRIŠANIN 1981) a indexom ohrozenia brehov eróziou (SOBE), ktorého výpočet publikoval ROSGEN (2002), resp. koeficientom ohrozenia brehov eróziou (KOBE), ktorého výpočet publikovali v USA (COMP. AUTHORS 1993). Výskum sme uskutočnili na štyroch prítokoch VN Hriňová (Slatina, Trkotský potok, Hukava, Klatov potok). Základné charakteristiky povodí a tokov sú uvedené v tab.1. a 2.

Názov	S _p	SI	I	H _{minpt}	H _{max}	ΔH_p	H _{maxt}	ΔH_{t}
toku	(km ²)	(km ²)	%	(m n.m.)	(m n.m.)	(m)	(m n.m.)	(m)
Slatina	21,690	16,810	77,5	609	1333	724	1221	612
Trkotský	4,248	3,376	79,5	572	953	381	807	235
Hukava	10,540	9,720	92,4	577	1458	881	1301	724
Klatov	0,953	0,818	85,8	573	895	322	743	170

Tab. 1.	Základné charakteristiky povodí a tokov	– 1. časť
---------	---	-----------

Vysvetlivky k tab. 1.: S_p – plocha povodia (km²); S_l – zalesnená plocha povodia v km²; /- lesnatosť povodia (%); H_{minpt} – ninimálna výška povodia a toku – uzavierajúci profil (m n. m.); H_{maxp} – maximálna nadmorská výška pohoria (m n. m.) ΔH_p –absolútny spád povodia (m); H_{maxt} – výška prameňa (m n. m.); ΔH_p – absolútny spád toku (m)

Názov toku	L _t (km)	L _u (km)	B _p (km)	φI _t	φI _{pov}	φH _{pov} (m n m)	š : d (-)	Q_1 (m ³ s ⁻¹)	Q_{100} (m ³ s ⁻¹)
Slatina	7,90	8,31	2,61	7,75	31,7	883	1:3,18	5,0	35,0
Trkotský	3,52	3,60	1,18	6,68	18,2	737	1:3,05	1,5	14,0
Hukava	6,10	6,18	1,70	11,87	30,0	912	1:3,64	2,0	20,0
Klatov p.	1,22	1,89	0,50	13,94	23,4	706	1:3,78	0,3	3,0

Tab. 2. Základné charakteristiky povodí a tokov – 2. časť

Vysvetlivky k tab. 2.: $L_t - dĺžka$ hlavného toku (km); $L_u - dĺžka$ údolnice (km); B_p - stredná šírka povodia (km); ϕI_t - priemerný sklon toku (%); ϕI_{pov} - priemerný sklon svahov (%); ϕH_{pov} - priemerná nadmorská výška povodia (m n.m.); $\dot{s} : d$ - pomer šírky ku dĺžke povodia; Q_1 - 1–ročný prietok (m³.s⁻¹), Q_{100} - 100-ročný prietok (m³.s⁻¹).

Z metodického hľadiska je dôležitý výber referenčných (pokusných) úsekov (PU) a určenie geometrických a hydraulických charakteristík pokusných prietokových profilov (PP). Riešenie problému výberu PU a PP, ktoré má pre správnosť analýz zásadný význam, vychádza z viacerých prác zahraničných autorov ROSGEN, SILVEY (1996), JOHNSON, HEIL (1996), HARMAN et al. (1999), CASTRO, JACKSON (2001), Mc.CANDLESS, EVERET (2002), PYRCE (2003). GREŠKOVÁ, LEHOTSKÝ (2006) modifikovali metódy identifikácie plného koryta na základe práce, ktorú publikoval PYRCE (2003).

Na prítokoch VN Hriňová boli v rôznych vzdialenostiach od ústia založené a na pevné body v okolí fixované PU a na nich PPP. PU boli založené na dĺžke, ktorá sa rovnala min. päťnásobku B (m). Pri zakladaní PU a PPP sme vychádzali zo systémov riffle-pool, a step-pool, ktoré vysvetlili ROSGEN, SILVEY (1996). Merania pozdĺžneho sklonu PU a priečnych rezov PP boli uskutočnené niveláciou. Na každom PP bol uskutočnený odber vzoriek splavenín na rozbor zrnitosti metódou, ktorú na stanovenie rozmeru efektívneho zrna d_e navrhol a v praxi overil KREŠL (1982).

V posudzovaní stupňa ustálenosti PU (PPP) sme vychádzali z rovnice, ktorú na výpočet súčiniteľa kvázirovnomerného prúdenia odvodil GRIŠANIN (1981) v tvare:

$$\mathbf{M}_{kp} = (\mathbf{R} \cdot (\mathbf{g} \cdot \mathbf{B})^{0,25}) \cdot (\mathbf{Qk}^{0,5})^{-1} \quad (-) \quad (2.1)$$

V rovnici (2.1) znamená:

 M_{kp} – súčiniteľ kvázirovnomerného prúdenia (-), R – hydraulický rádius (m), g –tiažové zrýchlenie (9,81m.s⁻²), B – šírka koryta v brehoch (m), Q_k – prietok plným prietokovým profilom (m³.s⁻¹), Q_k = Spp.v (m³.s⁻¹).

Stupnicu ustálenosti korýt prirodzených tokov (podľa hodnoty M_{kp}) sme vytvorili na základe dlhodobého overovania v 97. vodných tokoch so 475. PU a PPP v 7. geomorfologických celkoch SR po porovnaní s reálnym stavom ustálenosti korýt zisteným v teréne. Stupnica je uvedená v tab. 3.

Kat.	Stupeň ustálenosti koryta	M _{kp}
I.	zanášané	$M_{kp} \ge 0,71$
II.	veľmi dobre ustálené	$M_{kp} = 0,54 - 0,70$
III.	čiastočne ustálené	$M_{kp} = 0,48 - 0,53$
IV.	mierne neustálené	$M_{kp} = 0,44 - 0,47$
ν.	výrazne neustálené	$M_{kp} = 0,36 - 0,43$
VI.	extrémne neustálené	$M_{kp} \leq 0,35$

Tab. 3. Stupnica ustálenosti prirodzených korýt

Geometrické charakteristiky pokusných prietokových profilov jednotlivých tokov sú uvedené v tab. 4. Hydraulické charakteristiky pokusných prietokových profilov jednotlivých tokov sú uvedené v tab. 5.

		Stan.										S	K
P.	Názov	od	B	H	S _{pp}	O_1	O_2	0	R	M _{kp}	Kat.	0	0
С.	PU	ustia (km)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(-)	(-)	F	F
1	Slatina1	2,10	6,00	0,90	4,70	4,2	2,6	6,8	0,691	0,648	II.	10,7	2,8
2	Slatina2	2,61	5,90	0,85	4,50	4,5	2,1	6,7	0,672	0,637	II.	13,3	3
3	Slatina3	3,11	5,70	0,85	4,10	4,2	2,3	6,5	0,631	0,625	II.	14,0	3
4	Slatina4	3,55	5,50	0,85	4,10	3,8	2,7	6,5	0,631	0,583	II.	16,6	3
5	Slatina5	4,02	5,40	0,85	4,00	3,8	2,4	6,2	0,645	0,595	II.	16,1	3,3
6	Slatina6	4,57	4,70	0,80	3,40	3,6	2,0	5,6	0,607	0,534	III.	26,7	3,6
7	Slatina7	5,04	4,60	0,75	3,00	3,0	2,5	5,5	0,545	0,538	III.	25,9	3,5
8	Trkotský1	0,22	2,50	0,60	1,40	1,6	1,7	3,3	0,424	0,612	II.	18,3	3,4
9	Trkotský2	0,54	2,40	0,55	1,15	1,5	1,6	3,1	0,371	0,608	II.	19,7	3,4
10	Trkotský3	0,87	2,15	0,50	1,00	1,4	1,4	2,8	0,357	0,547	II.	20,6	3,5
11	Trkotský4	1,18	2,10	0,50	0,90	1,6	1,3	2,9	0,310	0,522	III.	23,9	3,8
12	Trkotský5	1,51	1,90	0,50	0,85	1,2	1,5	2,7	0,315	0,523	III.	24,7	3,8
13	Trkotský6	1,85	1,70	0,45	0,75	1,0	1,5	2,5	0,300	0,476	IV.	31,9	3,9
14	Hukava1	0,1	4,20	0,75	2,85	2,9	2,1	5,0	0,570	0,628	II.	16,6	3,3
15	Hukava2	0,60	4,10	0,70	2,50	2,7	2,1	4,8	0,521	0,586	II.	18,9	3,4
16	Hukava3	1,11	3,10	0,60	1,85	2,0	1,8	3,8	0,487	0,524	III.	21,1	3,7
17	Hukava4	1,62	2,90	0,60	1,80	2,2	1,6	3,8	0,474	0,500	III.	26,6	3,7
18	Hukava5	2,10	2,80	0,60	1,60	2,1	1,5	3,6	0,444	0,491	III.	26,2	3,7
19	Hukava6	2,56	2,75	0,60	1,50	2,2	1,3	3,5	0,429	0,477	IV.	27,8	4
20	Hukava7	3,05	2,50	0,55	1,30	2,1	1,2	3,3	0,394	0,469	IV.	34,3	4,1
21	Klatov1	0,10	0,90	0,35	0,28	0,6	0,9	1,5	0,187	0,448	IV.	39,5	4,5
22	Klatov2	0,23	0,85	0,30	0,24	0,6	0,8	1,4	0,171	0,434	۷.	46,0	4,8
23	Klatov3	0,35	0,80	0,30	0,22	0,6	0,7	1,3	0,169	0,449	IV.	37,7	4,7
24	Klatov4	0,44	0,70	0,30	0,19	0,5	0,7	1,2	0,158	0,450	IV.	41,9	4,7
25	Klatov5	0,53	0,60	0,30	0,15	0,5	0,6	1,1	0,136	0,436	۷.	46,0	4,9
26	Klatov6	0,61	0,60	0,25	0,13	0,5	0,7	1,2	0,108	0,425	۷.	46,8	4,9

Tab. 4. Geometrické charakteristiky PPP

Vysvetlivky k tab. 4.: B – šírka koryta v brehoch (m); H – priemerná hĺbka koryta (m); S_{pp} – plocha prietokového profilu v (m²); O_1 – čiastkový omočený obvod - dno (m), O_2 – čiastkový omočený obvod – svahy (m), O - celkový omočený obvod (m); R – hydraulický rádius (m), M_{kp} -súčiniteľ kvázirovnomerného prúdenia, Kat.- kategória ustálenosti, SOBE - stupeň ohrozenosti brehov eróziou KOBE – koeficient ohrozenia brehov eróziou.

Ρ.	de	N ₁	n ₂	n	У	С	i	v	Q _k
Č.	(m)	(-)	(-)	(-)	(-)	(m ^{0,5} .s ⁻¹)	(%)	(m.s⁻¹)	$(m^3.s^{-1})$
1	0,085	0,0315	0,035	0,0328	0,278	27,487	0,66	1,856	8,724
2	0,085	0,0315	0,035	0,0326	0,278	27,429	0,70	1,881	8,465
3	0,103	0,0322	0,050	0,382	0,307	22,717	1,06	1,857	7,617
4	0,105	0,0323	0,035	0,0334	0,283	26,261	1,01	2,096	8,595
5	0,121	0,0331	0,075	0,0479	0,351	17,894	2,22	2,141	8,565
6	0,120	0,330	0,050	0,0388	0,311	22,061	2,26	2,583	8,785
7	0,125	0,0333	0,050	0,0406	0,323	20,244	2,37	2,300	6,902
8	0,102	0,0321	0,050	0,0410	0,330	18,366	2,02	1,699	2,379
9	0,111	0,0326	0,050	0,0413	0,335	17,374	2,20	1,569	1,805
10	0,120	0,330	0,035	0,034	0,297	21,652	2,28	1,953	1,953
11	0,119	0,0330	0,035	0,0339	0,299	20,788	2,37	1,781	1,603
12	0,128	0,0335	0,0335	0,0335	0,296	21,181	2,40	1,841	1,565
13	0,120	0,0330	0,0330	0,0330	0,294	21,251	3,44	1,619	2,158
14	0,090	0,032	0,035	0,0332	0,284	25,625	0,92	1,855	5,288
15	0,107	0,0324	0,035	0,0335	0,288	24,713	1,26	2,002	5,005
16	0,110	0,0325	0,035	0,0336	0,290	24,137	2,33	2,571	4,756
17	0,120	0,0330	0,035	0,0338	0,291	23,765	2,65	2,663	4,794
18	0,120	0,0330	0,0330	0,0330	0,288	23,985	2,80	2,674	4,278
19	0,130	0,0337	0,0337	0,0337	0,292	23,153	3,40	2,796	4,194
20	0,130	0,0337	0,0337	0,0337	0,294	22,558	3,59	2,682	3,487
21	0,133	0,0339	0,0339	0,0339	0,306	17,641	5,90	1,853	0,518
22	0,130	0,0337	0,0337	0,0337	0,306	17,295	6,80	1,865	0,447
23	0,140	0,0343	0,0343	0,0343	0,309	16,814	6,82	1,805	0,397
24	0,144	0,0345	0,0345	0,0345	0,311	16,317	6,88	1,701	0,323
25	0,128	0,0335	0,0335	0,0335	0,307	16,181	6,98	1,576	0,236
26	0,168	0,0354	0,0354	0,0354	0,321	13,838	6,99	1,202	0,156

Tab. 5. Hydraulické charakteristiky PPP

Vysvetlivky k tab. 5.: d_e – rozmer efektívneho zrna (m); n_1 , n_2 – čiastkové stupne drsnosti- dno, svahy; n – celkový stupeň drsnosti; γ – premenlivý mocniteľ; c – rýchlostný súčiniteľ Pavlovského (m^{0,5}.s⁻¹); i – pozdĺžny sklon PU (%); v – priemerná profilová rýchlosť (m.s⁻¹); Qk – prietok plným prietokovým profilom – bankfull discharge (m³.s⁻¹)

VÝSLEDKY

Analýzou vzťahu medzi hodnotou súčiniteľa kvázirovnomerného prúdenia M_{kpr} ktorý vyjadruje stupeň prirodzenej ustálenosti koryta a indexom stupňa ohrozenia brehov eróziou – **SOBE** (obr. 1.), ktorý pre jednotlivé PP stanovila JAKUBISOVÁ (2010), sme zistili, že medzi nimi existuje tesná korelačná závislosť. S použitím regresnej rovnice vo všeobecnom tvare:

$$y=a_0. x^{a_1}$$
 (3.1)

resp. v tvare:

$$SOBE = a_0 \cdot (M_{kp})^{a_1}$$
 (3.2)

bol vypočítaný index korelácie $I_{yx} = 0,963$ a index determinácie $I_{yx}^2 = 0,927$. Výsledky boli overené štatistickým testovaním. Po dosadení absolútneho a regresného koeficienta rovnica nadobudne tvar:

SOBE =
$$3,45652 \cdot (M_{kp})^{-2,9649}$$
 (3.3)

Analýzou vzťahu medzi hodnotou M_{kp} a koeficientom ohrozenia brehov eróziou - **KOBE** (obr. 2.), ktorý pre jednotlivé PP stanovila JAKUBISOVÁ (2010), sme zistili, že medzi nimi existuje tesná korelačná závislosť. S použitím regresnej rovnice v tvare:

Obr. 1. Závislosť medzi súčiniteľom kvázirovnomerného prúdenia (Mkp) a indexom stupňa ohrozenia brehov eróziou (SOBE)

Obr. 2. Závislosť medzi súčiniteľom kvázirovnomerného prúdenia (M_{kp}) a koeficientom ohrozenia brehov eróziou (KOBE)

bol vypočítaný index korelácie $I_{yx} = 0,963$ a index determinácie $I_{yx}^2 = 0,927$. Výsledky sme overili štatistickým testovaním. Po dosadení absolútneho a regresného koeficienta rovnica nadobudne tvar:

$$M_{kp} = 1,70404 . (SOBE)^{-1,1856}$$
 (3.5)

ZÁVER

Porovnaním recentného stavu eróznych procesov na posudzovaných PU (zisteným v teréne) s vypočítanými hodnotami M_{kp} , indexov SOBE a KOBE sme zistili, že všetky metódy podávajú vcelku výstižný obraz o reálnom stave erózie na posudzovaných PU v prítokoch VN Hriňová. Výsledky je možné využiť v praxi v stanovení priority a intenzity opatrení na zmiernenie erózie v konkrétnych úsekoch skúmaných prítokov, čím sa môže významne obmedziť zanášanie a zlepšiť kvalita vody vo VN Hriňová. Použité metódy je v SR a v ČR potrebné overovať naďalej v rôznych prírodných podmienkach, čo môže viesť k širším zovšeobecneniam.

Literatúra

- CASTRO, J. M. JACKSON, P. L. (2001): Bankfull Discharge Recurrence Intervals and Regional Hydraulic Geometry Relationships. Journal of the American Water Resources Association, 37, 5, pp. 1249-1262.
- COMPOSITE AUTHORS (1993): New York Processes for Calculating Streambank Erosion. Wilsboro, New York: Boquet River Association (BRASS) pp. 59-66.

 GREŠKOVÁ, Á. – LEHOTSKÝ, M. (2006): Stav plného koryta a jeho význam pre poznávania manažment morfológie vodných tokov. Geografický časopis, 58, 2006, 4, s. 317-328.
GRIŠANIN,K.V. (1981): Dinamika ruslovych potokov. Leningrad: Gidrometeoizdat, 223 p.

HARMAN, W. A. - JENNINGS, G. D. - PATTERSON, J. M. - CLINTON, D. R. - SLATE, L. O. - JESSUP, A. G. - EVERHART, J. R. - SMITH, R. E. (1999): Bankfull Hydraulic Geometry Relationships for North Carolina Streams. In: Olsen, D. S.- Potyondy, J. P. (eds.): AWRA Wildland Hydrology

Symposium Proceedings, Bozeman, MT, 7 p.

JAKUBISOVÁ, M. (2010): Metódy informatívnej predikcie ohrozenosti brehov eróziou a ich overovanie na prítokoch VN Hriňová. Zborník referátov XXXII. konferencie priehradné dni 2010. Banská Bystrica: SVP, š. p., v tlači.

JOHNSON, P. A. - HEIL, T. M. (1996): Uncertainty in Estimating Bankfull Conditions. Water Resources Bull. Journal of the American Water Resources Association, 32,6, pp. 1283-1292.

KREŠL, J. (1982): Zrnitostní rozbor hrubozrných splavenin pro potřeby hrazení bystřin. Lesnictví, 28, (8), p. 695-708.

Mc. CANDLESS, T. L. - EVERET, R. A. (2002): Maryland Stream Survey: Bankfull Discharge and Channel Characteristics of Streams in the Piedmont Hydrologic Region. Annapolis: U. S. Fish & Wildlife Service, 40 p.

POLLEN, N., SIMON, A. AND COLLISON, A. J. C. (2004) Advances in Assessing the Mechanical and Hydrologic Effects of Riparian Vegetation on Streambank Stability, In: Bennet, S. and Simon, A. (eds.) Riparian Vegetation and Fluvial Geomorfology, Water Science and Applications 8, AGU, pp. 125-139.

PYRCE, R. S. (2003): Field Measurement of Bankfull Stage and Discharge. Waterpower Project Science Transfer Report 2.0, Ontario: Ministry of Natural Resources, Watershed Science Centre, 17 p.

ROSGEN, D. - SILVEY, H. L. (1996): Applied River Morphology. Pagosa Spring, Colorado: Wildland Hydrology, 396 p.

ROSGEN, D. L. (2002): A practical method of computing streambank erosion rate. Pagosa Spring, Colorado: Wildland Hydrology, 10 p.